In BAs, parameter uncertainty was considered as fully as possible when predicting hydrological outcomes (i.e. changes to surface water or groundwater) and ecological outcomes (i.e. changes to ecologically relevant receptor impact variables). For example, groundwater models were run hundreds to thousands of times using a wide range of plausible input parameters for many of the critical hydraulic properties, such as the hydraulic conductivity and storage coefficients of all modelled hydrogeological layers. This differs from the traditional deterministic approach used more routinely for groundwater and surface water modelling and is driven by the risk analysis focus of BAs. The quantitative representation of the predictive uncertainty through probability distributions allows BAs to consider the likelihood of impacts with a specified magnitude and underpins the impact and risk analysis. Sources of uncertainty that could not be quantified through numerical modelling were considered qualitatively.
Product Finalisation date
- 3.1 Overview
- 3.2 Methods
- 3.3 Potential hydrological changes
- 3.4 Impacts on and risks to landscape classes
- 3.4.1 Overview
- 3.4.2 Landscape classes that are unlikely to be impacted
- 3.4.3 'Floodplain or lowland riverine (including non-GAB GDEs)' landscape group
- 3.4.4 'GAB GDEs (riverine, springs, floodplain or non-floodplain)' landscape group
- 3.4.5 'Non-floodplain or upland riverine (including non-GAB GDEs)' landscape group
- 3.4.6 'Human-modified' landscape group
- References
- Datasets
- 3.5 Impacts on and risks to water-dependent assets
- 3.6 Commentary for coal resource developments that are not modelled
- 3.7 Conclusion
- Citation
- Acknowledgements
- Contributors to the Technical Programme
- About this technical product